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Abstract: RKB Bearing Industries Group has been using Evolutionary Algorithms for long, well 

aware that optimized products can make a difference in performance compared to the 

other producers. This paper is a brief review of the main aspects of the optimal design and a 

report on the achievements of the RKB Advanced Calculations and Optimization 

Department in the field. The differences between optimal design and conventional design 

are pointed out by way of a very simple example of mechanical design. Multi-objective 

optimal design via Evolutionary Algorithms of a specific cylindrical roller bearing is also 

presented. 
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1. Optimal design in modern engineering 

 

Optimization is an important concept in engineering. Finding any solution to a problem is not nearly as good as 

finding the one optimal solution to the problem. In the last decades the complexity of conceived products have met 

an extraordinary growth and it is estimated that, in the near future, designing a product will have to take into 

consideration a multitude of factors including actual design, manufacturing and logistics (supplying and distribution). 

The ever growing complexity of design problems obviously requires appropriate instruments. The present tendency in 

technical design of products is optimal design, which means conceiving and solving a mathematical programming 
problem based on the mathematical model of a real engineering problem. 

 

 

2. Structure of mathematical programming problems 
 

In mathematics, optimization, or mathematical programming, refers to choosing the best element from some set of 

available alternatives. Often, this number of possible alternatives is infinite or, at least, very high in computational 

time terms. It is worth noting here that the term mathematical programming is not directly related to computer 

programming. 

A mathematical programming problem has to fit to a certain format. Let the decision (design) variable vector be: 

  pxxxx  , ... ,, 21  

and suppose that its components are laying in the ranges: 

  ul xxx 111 , ,  ul xxx 222 , , ... ,  u
p

l
pp xxx ,  

Consider also the objective function (mono-objective optimization) or objective functions (multi-objective 

optimization) and a set of constraints (all of these are functions of the decision vector x ). Note that mono-objective 

optimization and multi-objective optimization respectively are two totally different approaches as will be seen in the 

following pages. To solve this mathematical programming problem means that one has to find x so that: 
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where the sign “ ” should be read “less than” or “less than or equal to” or even “equal to” as appropriate. 
 

 

3. Optimal design versus conventional design 
 

To fully understand the fundamental differences between conventional and optimal design will address a simple 

statement of the design of machine parts. The main problem in the field of mechanical design work is the 

dimensioning (sizing) of machine parts according to some known requirements. Sometimes you can also read of 
“pre-dimensioning”, that is determination of the main dimensions of the required mechanical parts by means of 

simplified relationships. 

Essentially, sizing means to solve an equation that describes the equality between a stress and an allowable stress. 

This equation has a certain number of unknowns (usually geometric dimensions) and, of course, has infinity of 

solutions. To solve such an equation the designer is forced to choose only one of these unknowns (main unknown) 

and consider as known all the others (giving them concrete values using its own experience and indications in the 

literature) or to express them as a function of the main unknown. Often the unknown what is meant to be removed is 

expressed as a product of the main unknown and a coefficient for which there are indications (within limits, 

sometimes very large) in the literature. In this way, a single-unknown equation is obtained and solved without any 

difficulty. 

Unfortunately, such an approach represents only the solving of the initial problem within a hyper-plane of the 

solutions space of the equation with several unknowns. There is no guarantee that this solution is the best (optimum) 

of the potential solutions to the problem. In addition, the solution found by solving an equation with a single unknown 

might not agree in other respects that the designer has not taken or could not take into account when writing the 

sizing equation. The constraints that one has to take into consideration refer to the economic, technological, 

assembling, material aspects of the design problem. 

It should be also discussed another aspect of the problem. In recent years there has been an explosive 

development of CAD software tools that enable a thorough analysis of the state of stresses and strains occurring in 

different designed parts. CAD software provides designer with particularly strong tools, but to start using any of these 

applications an "object" with a certain geometric shape and size is required. But this is precisely the question: How 

and where did these dimensions and this shape come from? The answer offered by the conventional design is often 

a “covering” pre-sizing and, therefore, the analysis of the state of stress and strain not infrequently finds that the 

designed object should be further modified to make better use of the available material. In this situation it is 

necessary to amend, by means of a CAD application, the size and sometimes the shape of the designed part in 

order to near the actual values of the stresses and deformations to the allowable ones. This process is time and skilled 

human resources consuming and, obviously, does not guarantee the best design solution in the given context. The 

answer given by the optimal design is an object that requires infinitely less subsequent changes in shape and size of 

the designed piece (or removes them completely), thereby allowing the designer, on the one hand, to make some 

fine adjustments, and, on the other, to identify and approach other design issues (all related to the discussed object), 

which could otherwise remain hidden or neglected. 

All the above clearly shows the optimal design advantages compared with conventional design. In the optimal 

design, the correct formulation of the mathematical programming problem will perform the coagulation of all 

project aspects in a uniform and global picture. All that, in classical design, was a succession of phases becomes a 

single process when the chosen approach is the optimal design. One might say that now all these phases are 

executed concurrently. 

 

 

Fig. 1 - Tubular beam design 
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Let's illustrate the above considerations by approaching a very simple design problem: the tubular beam of length 

L in figure 1 is centrally loaded by force F. Knowing the material of the beam, the problem is to find the values of 

outer diameter Do and inner diameter Di of the beam. The only equation available for dimensioning is the well-known 

bending stress equation: 
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Since there are two unknowns (Do and Di) and only one equation, in conventional design, one of the unknowns (Di 

in this case) is expressed as a function of the other unknown, using a coefficient of proportionality k:  

 oi DkD    

The equality between the bending stress and the allowable bending stress yields 
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and consecutively the value of the inner diameter is obtained according to the imposed proportionality. For 

example, if F = 10,000 N, L = 1,000 mm and the material of the beam is steel with density ρ = 7.87·10-6 kg/mm3 and 

allowable bending stress σb_allow = 100 MPa and if one chooses a value k = 0.75 for the coefficient of proportionality 

(from a literature recommended range of 0.7 to 0.85), one obtains Do = 91 mm and Di = 68 mm (rounded to integer 

values). In this case the mass of the beam is about 22.6 kg. Obviously the key feature of this design calculation is the 

selection of the coefficient k value. In fact from 0.7 to 0.85 the designer can select any value (unless additional 

aspects about the design are known) and obtains different results for Do and Di. 

In case of the optimal design approach, the designer can focus on any aspect that seems important to him. If, in 

the above case of tubular beam, his aim is to obtain a beam as lighter as possible in the given context, the mass of 

the beam will be the objective function and all the other design aspects he intends to take into consideration will 

form the constraint set. In this way he establishes the mathematical programming problem: 
  

- Objective function: mass of the beam 

  
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- Constraints: 
 

1. The bending stress should be less than or equal to the allowable bending stress: 

   0, _1_  allowbbioallowbb DDg σσσσ  

2. The thickness of the tubular beam wall should be at least a certain value δ (we consider δ = 6 mm in our 

example): 

   02,2 2  ieioie DDDDgDD δδ  

Solving this mathematical programming problem yields the following values: Do = 112 mm, Di = 100 mm and beam 

mass = 15.7 kg, which represents a decreasing by about 32% in comparison with the mass of the same beam 

obtained by conventional design. 

Certainly, the above example is very simple but our goal was only to prove how a conventional design problem 

can be transformed into an optimal design one. 

 

 

4. Conceiving the mathematical programming problem 
 

After a rigorous study of the requirements for the specific product (for example a rolling-contact bearing or any 

other machine element), a set of independent parameters that fully define the product can be identified (type, 

geometrical dimensions, materials etc.). These parameters are in fact the unknown variables of the design problem 

and also of the optimization program. The optimization program will consist of one or more objective functions that 

have to be either maximized or minimized and a set of constraints.  

Establishing of the objective function(s) is the most important step in setting-up the optimization process and 

directly results from the problem or has to be deducted from the general requirements. When these requirements are 

multiple and even conflicting, a weighted objective function or a multi-objective optimization algorithm can be 
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used. A typical case would be that when one wants high performance, while aiming to reduce, as much as possible, 

the costs. Objective functions can be the mass of single parts or subassemblies, radial or axial basic dynamic load 

rating of bearings, minimum thickness of the elastohydrodynamic lubricant film between the rolling element and 

bearing raceway, deformations of components of construction, potential energy stored, efficiency of transmission 

etc. 

A very important step in building an optimization problem is to determine the ranges where the design variables 

can take values, since the Cartesian product of these ranges becomes the search space (where one intends to find 

the optimal solution). This operation requires both engineering intuition and awareness of the limits of the chosen 

method. If the search space is too large, the probability of convergence in real time to a minimum (or maximum) of 

the objective function decreases, and if it is too narrow there is danger of losing solutions, some of which 

"unexpected", but sometimes very useful. 

Another key step in conceiving an optimal design problem is the setup of the constraint set. The more accurately 

the constraints reflect the actual design requirements, the closer to the design ideal solution the obtained solution is, 

but unfortunately the more difficult to solve the programing problem is. As constraints one can use verification 

relations of machine elements, technical or economic restrictions and many other restrictive but real conditions. 

It is worth mentioning that the objective function and the constraints should be considered in a wider meaning, 

namely as procedures. 

At this point two issues have to be solved: 
 

- how many objective functions should we use? 

- which are the instruments (algorithms) to be used for solving the optimization program (optimal design 
problem)? 

 

The first issue is closely connected to the specific optimal design problem and is up to the designer to choose the 

appropriate approach. For the second question we think that the answer lies in the so-called Evolutionary Algorithms. 

 

 

5. Mono-objective and multi-objective optimization 
 

Many researches in the field of engineering optimization (optimal design) began with mono-objective optimization, 

reaching notable results. This was an important step toward the approach of multi-objective optimization, given the 

fact that most real-world engineering problems have several objectives that are often in conflict. For example, if one 

refers to the optimization of a certain structure, one will normally want to minimize its weight (and consequently 

minimize its volume) and, at the same time, to minimize its deformations, so as to provide the maximum possible 

safety. These objectives are, however, conflicting, since minimal deformations will require a higher volume of material 

and, consequently, a higher weight. 

Another example (Deb, 2005) is that of the design of a product for minimum size and for maximum output (e.g. 

delivered power) simultaneously. Ideally, such a bi-objective optimization task results in a set of optimal solutions 

(known as Pareto-optimal solutions), each portraying a trade-off between the two objectives. Amongst these 

optimal solutions there is a solution (say solution A), which is the best for size consideration and hopefully a different 

solution (say solution B), which is the best for output consideration. Obviously, solution A has the smallest dimension 

possible, but it will often not be able to deliver much an output. On the other hand solution B (using the same 

technology) has a size and weight substantially large, but it is able to deliver the maximum output. 

There may also be a host of other solutions which are not as good as A in terms of size or not as good as B in terms 

of delivered output, but these intermediate solutions are good compromises to solutions A and B. However, one is not 

simply interested in finding a set of such optimal trade-off solutions, but wants to find and analyze them to discover 

some interesting commonality principles among all or many of these optimal solutions (useful in a possible future 

standardization). 

Since Pareto-based algorithms are probably the most suitable approaches for engineering optimal design, 

hereinafter we will preferably discuss only these ones. Pareto optimality was introduced in the late nineteenth century 

by the Italian economist Vilfredo Pareto, and is defined as follows: A solution is said to be Pareto optimal if there exists 

no other solution that is better in all attributes (objectives). This implies that in order to achieve a better value in one 

objective at least one of the other objectives is going to deteriorate if the solution is Pareto optimal. Thus, the 

outcome of a Pareto optimization is not one optimal point, but a set of Pareto optimal solutions (Pareto front) that 

visualize the trade-off between the objectives. A bi-objective Pareto front is roughly sketched in figure 2. 
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Fig. 2 - Bi-objective Pareto front 

 

 

6. What are Evolutionary Algorithms? 
 

If one goes for the optimal design option, the next step is to select the instrument for solving the mathematical 

programming problem. Most traditional techniques for the optimization of systems of several parameters involve the 

calculation of the first and second order partial derivatives of the objective function with respect to all variables. 

However, the situations where the analytical approach is difficult (large number of variables, very complex objective 

function, extremely large number of constraints) or impossible (discontinuous objective function, discrete variables 

etc.) are very common. 

Another disadvantage of conventional optimization algorithms is represented by their rigidity. Change of the 

objective function, widening of the search space, adding, removal or modification of constraints in most cases 

suppose a complete rewriting of the method, which is unacceptable in a world where huge amounts or positions on 

the market may be lost due to a slow adaptation to changing conditions of production. Also, this lack of flexibility 

obstructs the user to effectively implement the algorithm to similar but different problems (for example in terms of 

objective function). 

As often happens, nature seems to come to the aid of mathematicians and engineers, inspiring a new generation 

of optimization techniques: evolutionary algorithms. They take on natural selection principles and apply them to a 

population of possible solutions (called individuals or sometimes simply chromosomes) of an optimization problem. 

This is aimed at creating off-springs with "features" better than their parents, i.e. solutions that, if replaced in the 

objective function, will give better objective values. 

Evolutionary Algorithms (EAs) are a subset of Evolutionary Computation, generic population-based metaheuristic 

optimization algorithms. EAs encompass many optimization techniques as Genetic Algorithms (GAs), Evolutionary 

Programming (EP), Evolution Strategy (ES) etc. In the last years, the boundaries between GAs, EP and ES have been 

broken down and nowadays EAs combine the advantages of all these approaches. Recently this optimization 

algorithm class was completed by the so-called Memetic Algorithms (MAs). 

An EA uses some mechanisms inspired by the biological evolution: natural selection, reproduction, mutation, 

recombination, and survival of the fittest. Each optimization parameter xi is encoded into a gene using binary or real 

codes. The genes of all parameters x1, x2, ... , xp form a chromosome (individual) which describes a unique designing 

solution. A set of chromosomes, forming a set of distinct solutions, forms a population amongst which the best 

individuals are selected (based on the fitness function) for reproduction. Recombination is made using a specialized 

operator and the combination of the genes of the parents results in the offspring. The offspring (mutated or not) are 

inserted into the population and the described procedure starts again creating in this way an artificial Darwinian 

environment. The evolution of the population, therefore, takes place after the repeated application of the above 

operators. In figure 3 a very simple scheme of an EA is presented. 
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Fig. 3 - Principle of a very simple Evolutionary Algorithm 

 

Since the simplest EAs are good at exploring the solution space (because they search from a set of designs and 

not from a single design solution), their important drawback is that they are not well suited to perform finely tuned 

search. 

Starting from an idea of P. Moscato (1989) it has been argued (Hart, 1994; Wolpert, 1997; Culberson, 1998; 

Goldberg 1999) that it is essential to incorporate some form of domain knowledge into EAs to arrive at highly 

effective search. “Evolutionary Algorithms which include a stage of individual optimization or learning (usually in the 

form of Neighborhood Search - NS) as a part of their strategy are Memetic Algorithms” (Krasnogor, 2002). 

MAs have shown to be orders of magnitude faster than traditional GAs for some problem domains, even in well-

known large combinatorial optimization problems where other metaheuristics have failed. MAs are inspired by 

Dawkin's (1976) "meme" (abbreviation of the Greek word “mieme”), a concept representing a unit of cultural 

evolution, replicated by imitation, counterpart of "gene" in Darwinian evolution. It is worth noting that, so far, MAs 

have not been used yet in this sense, but this is the general trend in the field. As Krasnogor (2002) noted “there is 
much to be learned” in order to obtain real MAs. 

In practice, MA is a GA modified as follows: in each generation of GA, the NS operator is applied to all solutions in 

the offspring population, before applying the selection operator. 

 

 

7. Why Evolutionary Algorithms? 
 

As Peter J. Bentley highlights in his excellent book - Evolutionary Design by Computers, 1999 – there are four main 

reasons why the choice of Evolutionary Algorithms is appropriate for design problems: 
 

- evolution is a good, general-purpose problem solver; 

- uniquely, Evolutionary Algorithms have been used successfully in every type of engineering design; 

- evolution and the human design process share many similar characteristics. It is interesting to mention here 
that since 1991, David Goldberg compares the recombination of genetic material from parent solutions 

when forming a new child solution with a human designer combining ideas from two solutions to form a new 

solution; 

- the most successful and remarkable designs known to mankind were created by natural evolution. 
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In order to easily use an optimization technique for complex (hard) optimal design problems, the algorithm should 

be a robust one. David Goldberg (1989) has defined robustness as “the balance between efficiency and efficacy 

necessary for survival in many different environments”. 

Then one can define two purposes in constructing an optimization technique as its efficacy and efficiency. 

Efficacy means whether the optimization technique can reach the optimum or not. The common purpose in 

constructing optimization techniques is this efficacy, that is their convergence to the optimum of the problem. The 

other purpose, efficiency, means whether the technique can find a better solution under the constraints the problem 

has. The technique may not find the optimal solution of the problem due to the constraints, but it is important that 

better solutions are searched by the algorithm within the constraints. Therefore Goldberg concluded that “the most 

important goal of optimization is improvement. (...) Attainment of the optimum is much less important for complex 

systems” (1989). Obviously, Evolutionary Algorithms totally fulfill all these requirements. 

 

 

8. Multi-objective Evolutionary Algorithms (MOEAs) 
 

The multi-objective optimization algorithms represent the state-of-the-art of all optimization algorithms. The first 

implementation of a MOEA dates back to the mid-1980s (Schaffer‟s Vector Evaluation Genetic Algorithm – VEGA). 

Since then, a considerable amount of research has been done in this area, now known as Evolutionary Multi-

objective Optimization (EMO). As we already mentioned, since Pareto-based algorithms are probably the most 

suitable approaches for engineering optimal design, hereinafter we will preferably present these MOEAs. One can 

roughly divide MOEAs into two generations: 
 

- first generation MOEAs typically adopt niching or fitness sharing in order to block premature convergence; 

- the second generation of MOEAs was born with the introduction of the notion of elitism. In the context of 
multi-objective optimization, elitism usually (although not necessarily) refers to the use of an external 

population (also called secondary population) to retain the nondominated individuals. Elitism can also be 

introduced through the use of a (μ+λ)-selection in which parents compete with their offspring, and those that 

are nondominated (and possibly comply with some additional criterion such as providing a better 

distribution of solutions) are selected for the following generation. 

Second generation MOEAs can be characterized by an emphasis on efficiency and by the use of elitism (in 

the two main forms previously described). Today the transition from two to three objective functions is taking 

place in the literature, and the high-dimensional problems are the current focus of study among EMO 

research (Fleming, 2005). 

 

 

9. Optimal design of rolling-contact bearings via Evolutionary Algorithms 
 

Rolling bearings represent a perfect application field for Evolutionary Algorithms. Almost any area of today‟s 

industry uses rolling-contact bearings. An object that seems so trivial actually turns out to incorporate a huge amount 

of knowledge from mechanics, mathematics, physics, chemistry and the list seems endless. Among other things, the 

rolling element bearing industry was among the first to use fatigue life as a design criterion. 

However, notwithstanding the leading-edge scientific knowledge at the base of the product, the bearing industry 

remained somewhat outside the concerns of professionals working in the field of optimization. In the last two 

decades the number of scientific papers dealing with optimal design of bearings (whatever the used optimization 

algorithms are) is substantially lower than that of optimal design works in other fields of engineering, although the 

results have been more than promising. 

One of the first works in the field of optimal design of rolling-contact bearings is that of Boesiger and Warner (1991), 

which addresses the optimization of retainer spin bearing for momentum wheels (control-moment gyroscope, 

reaction wheel assembly). Wan Changsen, in his book Analysis of Rolling Element Bearings (1992), described an 

optimal design method by using a gradient-based numerical optimization technique for rolling-contact bearings. 

Probably for the first time he proposed five objective functions for optimal design of rolling-contact bearings: 
 

- the maximum fatigue life; 

- the maximum wear life; 

- the maximum static load rating; 

- the minimum frictional moment; 

- the minimum spin to roll ratio. 
 

These objective functions are nonlinear in nature and, moreover, they are associated with the geometric and 

kinematic constraints. Since the maximum fatigue life is the most important of the above objective functions (in fact 

fatigue failure is the main type of failure mode in rolling-contact bearings used in practical applications), Changsen 

proposed another single-objective function, namely basic dynamic load rating of bearings related to the bearing 

life. His formulation encompassed five design variables and inequality constraints for the optimum design of deep 
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groove ball bearings. However, only the basic concepts and solution techniques of the optimization problem were 

introduced, without any illustrations and solutions for the formulation he obtained. It is worth noting here that the 

concept of multi-objective optimization of rolling-contact bearings was also proposed. 

After more than ten years, Chakraborthy et al. (2003) employed a binary-coded genetic algorithm (BGA) to solve 

the Changsen„s formulation based on the requirement of the longest fatigue life (in fact the objective function was a 

simplified form of the radial basic dynamic load rating). They used five design parameters (variables or genes in 

terms of EAs): ball diameter, number of balls, pitch diameter, curvature radius coefficient of the outer raceway 

groove, and curvature radius coefficient of the inner raceway groove. However, the assembling angles and 

boundaries of the inequality constraints used were unrealistic and led to unrealistic results. 

Rao and Tiwari (2007) tried to correct this drawback and developed a rolling-contact bearing design methodology 

with improved and realistic constraints for the same single objective optimization with the help of GAs. In their 

approach the constraints contain unknown constants, which have been given ranges based on parametric studies 

through initial optimization runs. In the final run of the optimization, these constraint constants have been included as 

design parameters as well. The optimized design parameters have been found to yield better fatigue life as 

compared to those listed in standard catalogues. 

Recently, Lin (2010), using a real-valued GA with differential evolution (DE) together with a proper and original 

handling of those 20 constraints, dramatically improved the previous results obtained by the above mentioned 

predecessors in the optimum design of deep groove ball bearings, based on maximum fatigue life as an objective 

function. The results clearly show that the so-called GA–DE algorithm can successfully find the best dynamic load 

ratings, about 1.3–11.1% higher than those obtained using the traditional BGA. 

As for radial roller bearings, Kumar et al. (2008) developed a so-called optimum design methodology of cylindrical 

roller bearings using GAs. Also in this case the basic dynamic load rating was chosen as the objective function. 

Design variables included four geometrical parameters: the bearing pitch diameter, the diameter of the roller, the 
effective length of the roller, and the number of rollers. In addition, another five design constraint constants were 

included, which indirectly affect the bearing basic dynamic load capacity. These five design constraint constants 

were given bounds based on the parametric studies through the initial optimization runs. The optimization results 

proved a good agreement between the optimized and standard bearings in respect to the basic dynamic load 

rating. 

As is known the profile (crowning) of the roller plays an important role in the increase of life of cylindrical roller 

bearings. A flat profile of the rolling element results in edge stress concentrations at roller ends. A circular crowning of 

the roller eliminates the edge stress concentrations at low and moderate loads, but develops edge stress 

concentrations at heavy loads. The logarithmic profile of the roller results in no edge stress concentration at low, 

medium, and heavy loads, and the distribution of contact stresses is nearly uniform along the length of the roller. In 

2009 Kumar et al. improved this design methodology for the optimum design of cylindrical roller bearings by including 

the effect of the roller profile. Besides the already mentioned variable, they added two logarithmic profile 

generating parameters. Optimization results showed that the multiplier of the logarithmic profile deviation parameter 

has more effect on the fatigue life as compared with other geometric parameters. 

In the context of roller profile influence on the bearing fatigue life, the important results obtained by Krzemiński-

Freda and Warda (1996) and Fujiwara and Kawase (2006) have to be mentioned, even if the optimization was not 

performed via EAs. 

Regarding the optimal design of rolling-contact bearings by means of MOEAs, one might say that it is only at the 

very beginning. One of the first approaches is that of Gupta et al. (2007), in which three primary objectives for a 

deep-grove ball bearing (namely the basic dynamic load rating, the basic static load rating and the 

elastohydrodynamic minimum film thickness) have been optimized separately, pair-wise and simultaneously using the 

well-known NSGA II multi-objective optimization algorithm (Deb, 2002). The same ten design variables and almost the 

same constraints as in Rao‟s 2007 work were used. Bi-objective and three-objective Pareto fronts revealed some 

important conclusions: 
 

- the basic dynamic load rating and the basic static load rating are optimized simultaneously; 

- trade-off fronts should be used for studying effects of various parameters behind the calculation of dynamic 
and static load ratings; 

- one can perform a parametric study to find out the variation in the trade-off with the changing operating 
conditions; 

- dynamic and static load ratings have been found to be very sensitive to variations in the inner raceway 
curvature coefficient. 

 

In 2009 Savsani et al., using a modified particle swarm optimization technique, reported for the same problem 

much better results in comparison to those of Gupta, but the above conclusions remain valid. 

In 2010 Wei and Chengzu accomplished the optimal design of a high speed angular contact ball bearing by using 

the same Deb‟s NSGA II multi-objective optimization algorithm. This time the objective functions were rating life and 

spin frictional power loss. The results were remarkable: the optimized maximum rating life of the 7007AC bearing 
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operating at a DN (bore/mm × shaft speed/rpm) of 2.2 million was 7.5 times higher than that of conventional design, 

and when the spin frictional power loss was the same as in the case of conventional design, the rating life was 36% 

longer than that of the referential (current) design. 

 

 

10. The use of MOEAs at RKB Bearing Industries 
 

By way of example, we briefly present the multi-objective optimal design of the RKB NP 1092 cylindrical roller 

bearing (figure 4) accomplished by the Advanced Calculations and Optimization Department of the RKB Bearing 

Industries Group. The main geometric dimensions of this bearing are: 
 

- nominal bore diameter d = 460 mm; 

- nominal outer diameter D = 680 mm; 

- nominal width B = 100 mm. 
 

                                                      

Fig. 4 - NP1092 cylindrical roller bearing 

 

After a close study we concluded that the internal geometry of the bearing can be described by means of only 

three genes (table 1). Note that, as the optimization was performed using our optimization software based on 

Evolutionary Algorithms, the term variable is replaced by the specific term of gene. Unlike other previous works we set 

up a very simple algorithm to establish the appropriate number of rollers for each parameter set describing the 

internal geometry of the bearing. However, even if the roller length can be easily determined, we preferred to 

introduce Lw as a variable and write the program in the general case. 

 
Table 1 - Genes of the multi-objective optimal design of NP 1092 bearing 

 

No. Gene Denotation Range Type Precision 

1 Complex factor γ 0.00001 … 0.3 real 10-6 

2 Roller diameter Dwe 1 … 100 mm integer 100 

3 Roller length Lw 5 … 200 mm integer 100 

 

The objective functions chosen for the optimization were: 
 

- basic dynamic radial load rating of the bearing; 

- minimum lubricant film thickness in the area of rolling contacts (roller-inner ring raceway and roller-outer ring 
raceway). 

 

Obviously both functions should be simultaneously maximized even if and the more they are in conflict. Since the 

calculation of the minimum lubricant film thickness in the area of rolling contacts involves some radial load, unlike 

other works in the field, we assumed that the radial force loading the bearing is fraction (denoted by pC) of the basic 

dynamic radial load rating of the bearing. We considered a value of 0.15 for this fraction, considering it as the frontier 
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between a loaded bearing and a very loaded bearing. According to these considerations, the objective functions 

become as follows: 

 

 

 

 

 

where: 

 

 

 

 

and 

 

 

 

 

 

 

 

 

 

In order to perform the optimization, nine constraints were identified: 
 

C1: Roller diameter Dwe must be greater than or equal to a required value, Dwe_min: 

 

 

 

C2: Roller diameter Dwe must be less than or equal to an imposed value, Dwe_max: 

 

 

 

C3: Difference between inner and outer ring thickness has to be greater than or equal to a minimum imposed 

value, δio_min = 2 mm: 

 

 

 

C4: Difference between inner and outer ring thickness has to be less than or equal to a maximum imposed value, 

δio_max = 5 mm: 

 

 

 

C5: Circumferential distance (tenon thickness) δc between rollers, measured on the pitch circle, has to be greater 

than or equal to a minimum value, δc_min: 

 

 

 

C6: Circumferential distance (tenon thickness) δc between rollers, measured on the pitch circle, has to be less than 
or equal to a maximum value, δc_max: 

 

 

 

C7: Roller length Lw has to be less than or equal to a maximum imposed value, Lw_max: 

 

 

 

C8: The maximum hoop stress σhoop along inner ring cross-section must be less than or equal to the allowable hoop 

stress (for a maximum value of interference I = 0.3 mm) σhoop_all = 150 MPa: 
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where: 

 

 

 

 

 

 

δi: inner ring minimum thickness (mm); 

I: maximum interference (mm). 

 

 

C9: The maximum Hertz stress σH_i along the most loaded roller-inner ring raceway contact has to be less than or 

equal to the allowable Hertz stress σH_all ≈ 1300 MPa 

 

 

where: 

 

 

 

 

 

In order to solve the above optimization program we have used a mono- and multi-objective optimization platform 

developed in-house and based on all sorts of Evolutionary Algorithms. The most representative individuals from the 
obtained Pareto front are presented in figure 5. 

 

 
Fig. 5 - Representative individuals of the Pareto front 

 

As one can observe from the plot in figure 5 the values of the minimum lubricant film thickness in the area of rolling 

contacts (roller-inner ring raceway in almost all cases) are very close together and definitely cover the asperities of 

the rough surfaces of the roller and raceways. So the chosen solution for the RKB NP 1092 next generation design will 

be that with the maximum basic dynamic radial load rating (red values in figure 5) and sketched in figure 6. 
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Fig. 6 - RKB NP 1092 next generation design 

 

 

11. Conclusions 
 

Over the past decades EAs have proved to be very powerful tools in the optimal design of all sorts of mechanical, 

electrical, hydraulic etc. complex systems. Although their use in the design of rolling-contact bearings is somewhat 

delayed and there are relatively few studies in this field, the results so far make us confident in their widespread use. 

The design of bearings with high load capacities, low weight, low friction losses, and high resistance to wear is a goal 

of any manufacturer of high-performance bearings. In addition, the use of EAs in the optimal design of rolling-

contact bearings is justified because these algorithms are robust, flexible and able to deliver concrete and very 

good results in a reasonable period of time. For this reason, the RKB Bearing Industries Group has been using the 

Evolutionary Algorithms for many years, well aware that optimized products can make the difference in performance 

with the other producers. As regards optimal design, the current research trends at RKB focus most of all on the 

influence of the profile of the roller axial section and raceways cross-section on the basic dynamic load rating of the 

bearing. 
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