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1. Introduction

Production of large amounts of bearing arrangements destined to work in different applications requires a special management
than unique assemblies with the mating parts already measured and the working temperature very precisely estimated or known.
For the latter any company can offer reliable information regarding the life of the bearing arrangement, but for the former it is
almost impossible to make an accurate prediction without a powerful tool.

The bearing arrangement considered for optimization in this study is a particular one from the first category. Considering that
the purpose is to find the optimal design that maximizes the bearing arrangement life based on the value of the bench bearing
arrangement preload/clearance an optimization tool and one or more objective functions (based on reliable but fast models)
and constraints have to be used in the early phase of the design. Even if it might seem as a simple problem at first glance, it is
actually quite complicated because the lifetime calculation requires the real compressive forces that act on the rolling elements
of the bearings to be known. These forces depend on the loads transmitted from the shaft to the bearings and therefore, a simple,
reliable, but fast model has to be used for bearing load calculation within the optimization tool.

The Finite Element Analysis (FEA) is not a viable option due to the extremely long necessary running time. Even conducting an
optimization with an accelerated Evolutionary Algorithm (EA) the order of magnitude of the number of the objective function
calls is of hundreds of thousands and therefore, other model than FEA has to be used. Furthermore, the early phase of the design
is governed by uncertainty. Even though the tolerances are known, the exact values of the interference between the shaft and the
bearing inner ring bore and of the clearance between the housing bore and the bearing outer ring are unknown. Also, the working
temperature cannot be rigorously identified, it can only be estimated. Considering the abovementioned aspects, the need for an
efficient optimization tool, a fast model to substitute FEA, and a specific approach to deal with uncertainty is indisputable.
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Optimizations under uncertainty have been conducted in other fields or subfields such as portfolio management [1], option
pricing [2], medicine [3], mining sector [4], chemistry [5], logistics [6], and engineering [7]. In another train of thoughts many sci-
entific papers deal with the optimization of different machine elements, but there is a small number of available papers focused
on the optimization of the rolling bearings. Charabotry [8] describes a mono-objective optimization of a ball bearing having five
design variables using genetic algorithms. The aim was the maximization of the fatigue life. Rao and Tiwari [9] presented an op-
timal design methodology of ball bearings based on the maximization of the lifetime. The mono-objective optimization was also
conducted using genetic algorithms. A multi-objective optimization with non-conflicting objectives was conducted using NSGA II
(non-dominated sorting based genetic algorithm) [10]. Another multi-objective optimization with two objective functions (the
basic dynamic radial load rating of the bearing and the minimum thickness of the elastohydrodynamic film between rollers
and raceways) was performed using a multi-objective EA in order to obtain the optimal design of a single-row cylindrical roller
bearing [11]. However, none of the papers presents an optimization under uncertainty, despite the fact that a high degree of un-
certainty could be associated with the design and manufacturing of rolling bearing arrangements.

2. Research background
2.1. Bearing load models

After Sjovdll's pioneering work [12], probably the first general equations for the elastic equilibrium of a ball bearing in three of
the five possible degrees of freedom were given by Jones in 1946 [13]. Several years later he has brilliantly completed his work
[14] and a general model was issued, whereby the elastic compliances of a system of any number of ball and radial roller bearings
under any system of loads can be determined. The system approach signifies that the entire assemblage of bearings, shaft, and
supporting structure was looked at as a single, elastic system. The solution defines the elastic compliance of a point on the
shaft with respect to the supporting structure in five degrees of freedom. Considering also the centrifugal forces and gyroscopic
moments acting on the rolling elements, the internal load distribution is determined for all of the bearings in the system. Finally,
bearing lives are evaluated by summation of the fatigue effects of the passages of the rolling elements over precisely determined
paths in each bearing raceway.

In a two-part work, De Mul et al. constructed a general mathematical model for the calculation of the equilibrium and asso-
ciated load distribution in both ball [15] and roller bearings [16]. The bearings may be loaded—with known loads and
moments—and displaced in five degrees of freedom. The analysis is made with and without taking into account the centrifugal
forces acting on the rolling elements, whilst the internal friction is neglected.

In order to derive a bearing stiffness model for vibration transmission analysis Lim and Singh [17] had to establish the relation-
ships between the known bearing loads and moments transmitted through the rolling element bearing and the bearing displace-
ments in 5 DOF. The reader could find more details in the authors' previous work [18]. In 2012, Gunduz [19] continued this work
and developed the formulation of the stiffness matrix for a double-row angular ball bearing.

Houpert [20] proposed a so-called uniform analytical approach for ball and roller bearings which provides simple analytical
equations to calculate the bearing loading (three loads and two tilting moments) based on the bearing raceway relative displace-
ments (5 DOF). The interesting component of this approach is the manner of introducing the so-called equivalent displacements
and expressing the rolling element-race load as a function of them. Moreover, the three components of the load and the two com-
ponents of the moment on the inner raceway are calculated by integration, not by discrete summation. In 2014, Houpert strongly
enhanced his model [21], especially for roller bearings.

Hernot et al. [22] presented two stiffness matrices of angular contact ball bearings. Using the two leading Sjovill's load-
distribution integrals J, and J,, the summation of ball-raceway loads was replaced by an integration and, in this way, the matrix
connected to the conventional model in 2 DOF is first introduced. Using the constructed model, a study of a two bearing-shaft
assembly where shaft deformations are ignored, was carried out. But, by taking preload into account it was clearly demonstrated
how the influence of the preload on the assembly rigidity and bearing fatigue life may be analyzed. Conclusively, the matrix for-
mulation of the 5 DOF model, connected with the Houpert's early model [20], is presented.

In two successive papers, Liao and Lin first established [23] and then developed [24] a tree-dimensional expression for the
elastic deformation of bearing balls in terms of the geometry of the contact surface and the inner and outer raceway positions.
Bai and Xu [25] reported a dynamic model of ball bearings used to study the dynamic properties of a rotor system supported
by ball bearings under the effect of both internal clearance and raceway waviness. The proposed model includes centrifugal forces
and gyroscopic moments.

Relative to our preeminent topic, in the fundamental two-volume monograph, Harris and Kotzalas presented either the
Sjovdll's model of load distribution within ball and roller bearings under given external radial and axial load [26], or, partially
[27], the Jones' already mentioned work.

Recent works are focused on obtaining the bearing stiffness matrix by extending the Jones' approach as Noel et al. [28] or
by using FEM as Guo and Parker [29]. In both approaches, the external bearing loading has to be known. Relevant results
were issued in the latter quoted paper, regarding the bearing radial and axial stiffness, respectively the obtained radial/
axial stiffness-load relationship for both radial cylindrical roller and ball bearings being significantly different from those
predicted by Gargiulo's well-known equations [30] (perhaps because these old equations do not take into account the elas-
ticity of bearing rings).
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2.2. Stochastic optimization

Stochastic programming is a way of tackling the uncertainty by optimizing the objective function on average and also requir-
ing the satisfaction of the constraints (if there are any) on average [31]. This type of programming is focused on making the most
out of the fact that the probability distributions of the involved random variables are known or might be estimated. Therefore, the
aim is to find the solution that is feasible for almost all possible realizations of the uncertain variables and maximizes the expec-
tation of the wanted function. The expectation, also known as the expected value, of a function f(x,®) depending on a vector of
decision variables x and a vector of random variables @ with joint density h,,, is given by [32]:

F(x) = E,[f (x, 0)] = '/nf(XJ)hw(J’)dy (1)

for continuous distributions, where () is the domain for w, or

N
F(xX) = E,[f(x.0)] = > pi- f(x, o) (2)

i-1
for discrete distributions, where p; is the probability value for the realization w; of the vector o, i = 1,2,...,N, and N is the

number of possible combinations of the random variable values contained in .

In general, stochastic programming models can be solved using different methods and the solution needs to be analyzed and
interpreted in order to provide useful information to the decision-maker. A general formulation for the stochastic programming
problem is [31]:

min E, [f(x, ©)] ()

subjected to:

E,lgi(x,0)] <0, i=1.2,...,m W

where f is the objective function and g; are the constraint functions, i = 1,2,..m.
2.3. Cuckoo Search algorithm

Cuckoo Search (CS) is a population-based algorithm inspired by the breeding behavior of some cuckoo species. These birds are
known for their distinctive and loud koo-koo calls, but also for their aggressive mating approach. They all migrate towards better
places (with better food and better nests) where they lay their eggs. Some cuckoo species, such as Ani and Guira, stand out due to
the fact that they made the habit of laying their eggs in communal nests. Sometimes they even remove the eggs laid by other
cuckoos in order to increase the probability that their own eggs will hatch.

CS algorithm has been developed in 2009 by Xin-She Yang and Suash Deb [33] and it is based on the so-called Lévy flights. It
has been observed that, in nature, animals have a random and quasi-random manner of searching for food. In general, the path
described while searching for food is a chaotic one with no apparent order [34]. But actually, the direction where the search is
headed from the current position can be modeled based on a probability function. Lévy flights are a category of random walks
specific to certain insects. Due to the fact that in nature this behavior has been a successful one, it has been embraced in optimum
search algorithms. Lévy flights, named after the French mathematician Paul Lévy, provide random walks with a random step
length drawn from a Lévy distribution [33], also called stable distribution [34]:

Levy~u=t"1<A<3 (5)

which has an infinite variance with an infinite mean. These steps actually generate “a random walk process with a power-law
step-length distribution with a heavy tail” [33] which can be described as clusters of small steps separated by dramatic jumps.
The random walk using Lévy flights generates a new solution for a certain cuckoo x;, according to:

(k+1)
i

(k)

X =X +o-Lévy(N) (6)

where k is the current generation and « is a real positive value representing the step size scaling factor which should be related to
the scales of the problem that needs to be solved [35].
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3. Application to be optimized

The application depicted in this study consists in a hollow bevel pinion-shaft resting on two similar single-row angular ball
bearings (basic designation 7048) in back-to-back (O-) arrangement (Fig. 1a). The shaft is driven by a V-belt drive at a speed
of 500 rpm. The driven pulley is mounted on the shaft end by means of a key which is not shown in Fig. 1a. A certain bending
force will load the shaft in node 1, due to the necessary belt tension. The reference points of the bearings are 5 and 8, respectively,
and the large tapered half bevel pinion is discretized in three frustums of cone which in the analysis were considered as cylinders
with the outer diameters equal to the mean diameters of the corresponding respective portions. The shaft geometry can be ob-
served in Fig. 1a and the shaft loading in two perpendicular planes is detailed in Fig. 1b (the horizontal plane) and Fig. 1c (the
vertical plane) and the values are provided in Table 1.

The shaft is manufactured of chromium steel and the housing is made of gray cast iron. The information about lubricant and
lubrication system is displayed in Table 3. The considered values of the basic static and dynamic radial load ratings of both bear-
ings are C; = 260 kN and Cy, = 375 kN, respectively. Regarding the bearing seats, it was considered that the outer surfaces of
shaft journals are ground and the roughness is R;s = 0.8 um. The same roughness (i.e. Ry = 0.8 um) was accepted for the hous-
ing bore surfaces. The tolerance of the shaft journal diameter is m6 and the tolerance of the housing bore diameter is H7 (same
for both bearings). Furthermore, it should be mentioned that the spacers between the inner and outer rings of the two bearings
(Fig. 1a) are ground so that an axial bench preload/clearance is achieved.

An important parameter that influences the bearing arrangement life is the operating temperature. For example, for this ap-
plication if the bearing operating temperature is considered the ball temperature, namely 90 °C, the bearing temperature follows
the distribution given in Fig. 2. It has to be mentioned here that the employed model implies a linear temperature drop or in-
crease between the known temperatures of the limiting surfaces of a certain part. For different operating conditions similar bear-
ing temperature distributions as the one in Fig. 2 are generated. Other parameters that influence the bearing arrangement life
besides the temperature are the mounting preloads/clearances of each bearing. Again, as an example, for a working temperature
of 90 °C, an interference between the shaft and the bearing inner ring bore of —42.5 pm, and a clearance between the housing
bore and the bearing outer ring of 42.5 pm (most probable theoretical values), the coordinates of the groove centers of both
inner and outer rings were computed and are given in Table 2 (the upper sign refers to bearing 1 and the lower to bearing 2).
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Fig. 1. Shaft supported by two single-row angular ball bearings in back-to-back (0-) arrangement: a) sub-assembly axial section; b) shaft loading in the horizontal
plane; c) shaft loading in the vertical plane.
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Table 1

Shaft loading.
Plane Loading Value
Horiz. Bevel pinion radial force, kN 13.128
X0z Bevel pinion axial force, kN —2.916

Moment of the bevel pinion axial force, kKN-mm 113.105

Vert. Belt load, kN 36.929
)(0)'¢ Bevel pinion tangential force, kN —43.654

Obviously, these changes in the coordinates of the ring groove centers determine the change in the preload/clearance of the bench
bearing arrangement.

The question that will arise naturally is: what value of the preload/clearance will get the maximum life of the bearings? We
ran the program developed based on the bearing load model proposed in this paper for values between — 130 um (preload)
and + 50 um (clearance) with a step of 5 um and the results in terms of bearing modified lives (according to [37]) were plotted
in Fig. 3. The values of the interference between shaft and bearing bore, the clearance between the outer ring and housing bore
were set at their maximum probable values, and the bearing working temperature was considered 90 °C. It can be easily noticed
that in these conditions the maximum bearing arrangement life will be attained if the bearing arrangement is set at —60 um
(preload).

Such an approach may be sufficient for a project that is not very important and/or sophisticated or when the values of the
abovementioned interferences/clearances are known but for the production of large amounts of assemblies destined to work in
different applications it is no longer valid, because the interferences, clearances and working temperatures are random variables
subjected to more or less known laws of distribution.

4. Ball bearing life model

Unlike the procedure recommended by ISO 281:2007 [38], according to ISO 16281:2008 [37] the values of the compressive
loads acting on each ball of the bearing are crucial in ball bearing life calculation. Any reference to the bearing life will hereinafter
be considered as a reference to the modified rating life of the bearing as provided by ISO 16281:2008. As one can see in the ap-
pendices the ball compressive loads are functions of the ball deformations and these are in turn functions of the relative displace-
ments of the inner ring with respect to the outer ring. Consequently, the first goal to be achieved is to find the linear and angular
displacements of the bearing reference points.

The concept lying behind the proposed method for calculating these displacements is based on a systemic approach: when the
static equilibrium of the shaft is reached, the loads and moments transmitted from the shaft to the bearings (vector FM(AO))
must be reacted by the loads and moments arisen due to the elastic deformations of the rolling elements (vector fm(A0)):

FM(A0) + fm(A0) = 0 (7)

In the proposed approach, the former are obtained using the slope-deflection method (very likely never used before in this
context), and the latter result from a certain load-deformation model of rolling elements of the bearing. Thus, the unknowns of
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Fig. 2. Bearing temperature distribution.
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Table 2
Coordinates (in own systems) of the bearing ring groove centers.
Status Coordinates of the groove center of the Contact angle o [rad]]
Inner ring Outer ring
To, [mm] Xo, [mm] ro, [mm] Xo, [mm]
Theoretic! 150.404 +0.339 149.328 70.564 +0.698
After mounting? 150.428 +0.369 149.338 70.564 +0.708
In operation® 150.524 +0.369 149.406 70.480% +0.650°

1 At a reference temperature of 20 °C.

2 Taking into account the mounting temperature of 25 °C.

3 At the working temperature; the bearing loading is not considered.

4 The inner ring is considered fixed and the outer ring is displaced with the difference between the thermal expansion of the shaft and housing.
5 The decrease is caused mainly by the thermal axial expansion of the shaft.

Eq. (7) are the displacements 6 and the rotations 6 of the shaft support reference points (nodes k; and k,—see Fig. 4) given
by

“ T
mz@%beesseo) (8)

Zky Yy ey Yky Zky Vi Zky

which are determined first by solving the equations of equilibrium. Once these displacements are found, the unknown forces
are obtained through force-displacement relations. Please note that nodes k; and k, correspond to nodes 5 and 8, respectively,
from the particular case of the shaft rested on two bearings presented in Section 3. The procedure by which Eq. (7) is aggregated
is presented in detail in Appendix A and Appendix B.

By solving through an iterative method the set of simultaneous Eq. (7), the vector A® is obtained and it can be easily disag-
gregated in two displacement vectors corresponding to each bearing (66 vectors in Appendix A). With these the deformation of
each ball of each bearing is calculated and therefore, the corresponding compressive loads are obtained (see Appendix B). From
this point the bearing life calculation follows with no difficulties the procedure from ISO 16281:2008.

It has to be mentioned here that number of unknowns of the system of nonlinear equations that results from the static equi-
librium condition depends on the number of bearings and not on the number of discretization nodes. Moreover, the matrices in-
volved in the solving process depend only on the shaft (geometry and material) and its loading. All these transform the
computation into a facile one, no matter how complicated the shape of the shaft and its loading is.

For the particular case of the application presented in Section 3 in which the shaft was defined using 14 nodes, a system of 70
non-linear simultaneous equations with 70 unknowns is obtained if one uses FEA. However, using the method proposed in this
paper there are only 9 simultaneous equations with 9 unknowns. Considering that the solving of the system of simultaneous
equations has to be performed at every step of the optimization algorithm when the objective function is called, the model pro-
posed in this paper becomes more advantageous with respect to a FEA-based model.

5. Optimization tool

In order to efficiently solve the proposed optimal design problem under uncertainty we chose CS algorithm. The standard ver-
sion of CS that uses cuckoo migration based on Lévy flights was modified so that it manages to make a tradeoff between exploi-
tation and exploration. The algorithm was improved based on the idea that with greater knowledge, less exploration is necessary.
For this reason, the evolution of the knowledge accumulated by the cuckoo population during migration was measured in an orig-
inal manner based on the Knowledge Gradient policy (KG). We call this enhanced algorithm KGCS. The pseudocode of the im-
proved CS algorithm is given in Fig. 5.

The algorithm was redesigned with two well delimited phases. The first phase is focused on exploring the search space while
in the second phase the degree of exploration is reduced and the degree of exploitation is increased.

Table 3
Lubricating conditions.
Parameter Value
Kinematic viscosity of oil at 40 °C, mm?/s 80
Kinematic viscosity of oil at 100 °C, mm?/s 8.6
EP additives No
Lubrication type Qil lubrication without filtration
Cleanliness codes ([36]) —/15/12
Reference kinematic viscosity of oil, mm?/s 14.95
Kinematic viscosity of oil at working temperature, mm?/s 11.20

Viscosity ratio 0.75
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Table 4
Standard CS vs. KGCS — test results.
Function Average required number of objective Average required number of Difference % difference
function evaluations applying standard CS objective function evaluations applying KGCS
Rosenbrock 205,178.6 190,621.4 14,557.2 7.09%
Griewank 199,214.3 186,350.5 12,863.8 6.46%
Ackley 177,571.4 168,978.6 8592.8 4.84%

In order to achieve an increased level of exploration in the first phase, KGCS uses three cuckoo populations. They are initially
randomly generated within the bounds of the search space and evaluated by calculating the fitness for each cuckoo. The three
populations explore the search space and try identifying the best solution independently. The exploration process is based on lay-
ing eggs using Lévy flights and lasts for several generations. During the exploration phase an archive with the best cuckoos is up-
dated for each population at the end of each generation. Tests have shown that the level of 5%-10% from the maximum allowed
number of generations is a good end condition for the first phase.

When the exploration phase has ended, the value of the gradient is computed according to the KG policy for each population
based on its own archive containing the best cuckoos obtained so far. The detailed mathematical model on which the implemen-
tation of gradient was based is presented in [39].

In the second phase, the migration process towards the optimal solution is conducted only by the population which proved to
be the best and which ensures the largest expected improvement when estimating the best reward according to KG policy. The
end condition of the second phase consists in reaching the maximum allowed number of generations.

The KGCS algorithm was tested on some benchmark functions such as Rosenbrock, Griewank, and Ackley's function. The evo-
lution of the populations was monitored during the two phases of the algorithm for each of the tested functions. An intense ex-
ploration of the search space was observed during the first phase, while the second phase was characterized by an increased level
of convergence. The improved algorithm was tested 10 times on each of the mentioned benchmark functions. The results are
summarized in Table 4.

When comparing the results obtained using KGCS algorithm to the ones obtained using the standard version of CS algorithm, it
has to be mentioned that both algorithms have a percentage of identifying the global optimum of 100%. However, there is a de-
crease of the number of evaluations required to find the global optimum when using KGCS that is presented in Table 4.

The average decrease of the number of required objective function evaluations caused by using KGCS is about 12,005 evalua-
tions, which means a percentage decrease of 6.13% from the number of required objective function evaluations when using stan-
dard CS. Even if the improvement of 6.13% does not seem to be so important, it can become crucial when it comes to complex
optimization functions which require a long running time. Moreover, it is very likely that more runs are required to obtain an ac-
curate solution when the process is governed by randomness and in this case any decrease of the running time is a desirable ben-
efit. Also, the percentage decrease might differ when KGCS is used for other functions. For example, for the optimal design
problem approached in this study, the percentage decrease was 13% for the first stage and approximately 17%, for the second
and the third stages.

6. Problem formulation

The optimal design of the bearing arrangement presented in Section 3 was addressed from the maximum bearing life stand-
point. The aim was to find the optimal bench bearing arrangement preload/clearance that maximizes the bearing arrangement life
(minimum bearing life of the two bearings from the considered arrangement — see Fig. 3) calculated according to [37] using the
method presented in Section 4.

In order to validate the proposed optimization procedure a simplified problem was first formulated and the bearing arrange-
ment life, denoted hereinafter by L, was expressed as a function of only four variables. The first variable, x, represents the un-
known bench bearing arrangement preload/clearance. It was considered to be varying between —110 um and 5 pm (a
negative value refers to bearing arrangement preload, while a positive one refers to bearing arrangement clearance). The other
three variables are random variables and they were considered to have the same values for both bearings. The second variable,
In, represents the interference between the shaft and the bearing inner ring bore, the third one, Cl, represents the clearance be-
tween the housing bore and the bearing outer ring, and the last variable, T, represents the bearing operating temperature. For the
considered bearing arrangement, the Gaussian probability distribution for In and Cl was established according to [40] and the

Table 5
Random variable domain and probability distribution.
No. Variable Unit Symbol Probability distribution
1 Interference pm In In ~ N(—42.5, 6.07)
2 Clearance pum a Cl ~ N(42.5,10.58)

3 Temperature °C T T ~ N(70,6)
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Table 6
Optimization results.
Problem Stage Solution [pm] Standard deviation [um]
Simplified I —55 0.480
11 —63 0.672
il —37 0.443
Real 1 —55 0.792
11 —65 0.758
11 —36 0.188

results are given in Table 5 where N (u,0) represents the normal distribution with the mean p and the standard deviation o. For
the random variable that represents the temperature the range is [50; 90] °C and the probability distribution is shown in Table 6.
These values were chosen because we consider that it is a suitable proposal that maps on the reality of the working conditions of
the application.

Taking into consideration that we deal with a process governed by three random variables, providing an optimal solution as a
single value for the unknown x is hard to believe and accept and even harder to put into practice. Hence, an interval-solution is
more desirable. In order to obtain both the optimal value for x and the optimal interval-solution, the proposed optimal design
problem was formulated as a three-stage optimization problem.

The goal of the first stage is to find the optimal value of the bench bearing arrangement preload/clearance as a single point
X0,X0€[—110;5] um while maximizing the expected bearing arrangement life. The first-stage problem was formulated as a sto-
chastic maximization problem:

nrT

1 . I
111%:5] v ;L()@ In(i), Cl(i), T(i)) 9)

x€[

where nrT represents the sample size in the Monte Carlo Sampling (MCS) used to approximate the expected value of the bearing
arrangement life. The sample consists of triplets containing values for interference, In(i), clearance, Cl(i), and temperature, T(i).
These values are randomly generated according to their own probability distribution (Table 5). Since there is no risk of confusion,
the simplifying notation using only the variable i will be hereinafter used to refer to the triplet (In(i),Cl(i), T(i)).

The last two stages of the optimization aim to find the optimal solution as the largest interval of convenient solutions. For a
given triplet the maximum bearing arrangement life is obtained for a value x,, of the bench bearing arrangement preload/
clearance. We define a convenient solution x. as the value for which the bearing arrangement life is at least 95% from the maximum
life obtained for x,,. For the example given in Fig. 3, x,, is —60 um and the convenient solutions are from — 80 um to — 30 pm.
Consequently, a value x., Xx.€[—110;5], is a convenient solution if L(x.,In,Cl,T)>0.95-L(X,,In,Cl,T), where x,, is the value that
maximizes L(x,In,Cl,T) for a given triplet (In,Cl,T)€[—68; —17]x[0;85]x[50;90]. Obviously, the convenient solutions for a
given triplet lay into a range containing X;,.

Introducing p,q€0; 1], we define the following two functions that will be used in the search for the lower and upper margins
of the convenient solution set:

low : [0;1] = [—110;%x,], low(p) = Xo(1—p)—110p (10)
up : [0;1] > [xo5 5], up(q) =Xo(1—q) + 59 (11)
4500 S
. 4000 | ;4," - | ~~,~"~,-‘1;
- ’
E [/
‘a'- 3500 ll
= /
w ’, \
£ 3000 o ~
® ’
; "/ \\
& 2500 4
3 /
= 2000 P e Bearing 1
/
/ ===-Bearing 2

1500

-130 -110 -90 -70 -50 -30 -10 10 30 50
Preload (-) / clearance (+), pm

Fig. 3. Modified bearing lives vs. bench bearing arrangement preload/clearance.
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Fig. 4. Cartesian global and local systems of coordinates referring to the shaft and bearings.

KGCS algorithm:

begin
generate three initial populations of cuckoos
evaluate the fitness of each cuckoo from each population
save the best cuckoo so far for each generation in its own archive
initialize generational counter & to 0
while (k < 5% - Nmax)
for each population
for each cuckoo in the population
generate a new cuckoo using Lévy flights
evaluate the fitness of the new cuckoo
if the obtained fitness is larger than the parent fitness
replace the parent with the new cuckoo
end if
end for
replace a fraction pa of the cuckoos with new ones
evaluate the new cuckoos
update the archive with the best cuckoos
update generational counter k
end for
end while
compute knowledge gradient for each population based on its own archive
choose population with the largest knowledge gradient
find the best cuckoo obtained so far for the chosen population
while (k < Nmax)
for each cuckoo in the chosen population
generate a new cuckoo using Lévy flights
evaluate the fitness of the new cuckoo
if the obtained fitness is larger than the parent fitness
replace parent with the new cuckoo
end if
end for
replace a fraction pa of the cuckoos with new ones
evaluate the new cuckoos
update the best cuckoo obtained so far
update generational counter k
end while
return the best cuckoo
end

Fig. 5. KGCS pseudocode.
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In order to find the lower margin which represents the minimum allowed convenient bench bearing arrangement preload/
clearance, the following problem was formulated:

nrT

i . .1
min A» [0.95- L(xq,1)—L )] 4~ .
pefo:1] ';[ (X0, 1) —Liow(p, 1)] » ”

where A is a penalty coefficient whose purpose is to penalize all values that are not convenient solutions for all generated triplets.
By using a penalty coefficient, the search is directed first towards the range containing convenient solutions. In order to ensure
that the obtained value is indeed the minimum allowed convenient solution for all randomly generated triplets the ratio 1/p
was introduced in Eq. (12). The aim is to maximize p because a larger value of p corresponds to a lower value for the lower mar-
gin of the solution set. The function Ly, is used to express the utility brought by a value low (p) and its functional form is based
on the idea that all convenient solutions are contained in the interval-solution and therefore, in this stage they offer us the same
utility as the value xo that maximizes the bearing arrangement life. This function is given by:

.~ [0.95L(x,,1), if L(low(p),i) > 0.95L(xy, i)
Liow(p. 1) = { L(low(p), 1), otherwise (13)
The third stage of the conducted optimization consists in finding the upper margin of the solution set which represents the
maximum allowed convenient bench bearing arrangement preload/clearance. In order to achieve this, the optimization problem
for the third stage was formulated as follows:

nrT

. . 11
min )\i:] [0.95 L(Xg, 1) —Lyp (q, z)] g (14)

where A is a penalty factor with the same purpose as before. The ratio 1/q was introduced in Eq. (14) to ensure the largest
value for the upper margin of the solution set. The aim is to maximize g because a larger value of q corresponds to a larger
value for the upper margin of the solution set of convenient solutions. The function L, similar to Loy, is used to express the util-
ity brought by a value up(q):

0.95L(xg, 1), if L(up(q),i)20.95L(xy,i)

Lup(q-, l) = { L(up(q)~ l), otherwise (15)

7. Optimization results

For all three stages of the conducted optimization using KGCS, 500 triplets per cuckoo generation were used and 225,000 eval-
uations of the objective function were allowed. Particularly, for the second and the third stages of the optimization, the penalty
factor N\ was set to 10'° and x, was set to —55 pm, the optimal value of the bench bearing arrangement preload obtained in
the first stage.

The optimal values resulted at each stage are provided in Table 6 as the average solutions obtained from 10 trials per stage. To
have a fair time comparison we adopted the average running time required for the entire optimization as the unit of time, UT
(about 18 min for an Intel Core™ i7-3632QM, 6 MB Cache, 2.20 GHz processor and an installed memory of 8 GB RAM). The av-
erage running times required for stages [, II, and III are 0.17 UT, 0.42 UT, and 0.41 UT, respectively.
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Fig. 6. Distributions obtained using MCS 100%.
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Fig. 7. Distributions obtained using MCS 95%.

In order to validate the results obtained using KGCS, MCS was chosen as an estimation tool and it was used for two different
types of estimations. The first estimation, corresponding to the first stage of the conducted optimization, was called MCS 100%. For
each of the three random variables (In, Cl, and T), 125 values were generated according to their distributions (Table 5) and then,
all possible combinations were considered. For each combination the solution was found as the bench bearing arrangement pre-
load/clearance x that maximizes the bearing life function, where x€{—110,—105, ...,0,5} um. MCS 100% was repeated 3 times
and each time the relative frequency (the number of appearances as solution divided by the sample size) of the obtained solutions
was computed. The three MCS 100% distributions can be observed in Fig. 6.

The average of the means of the three distributions is —56.8732 ym and the average computing time was 49 UT (almost 15 h
on the same machine). When comparing the estimation results to the optimization ones, if one takes into consideration that all
the variables were randomly generated, it can be stated that the difference between the solution from the first stage of the op-
timization and the obtained average mean of the three MCS 100% is insignificant. However, the time difference, well reflected
by the time ratio 0.17:49, is huge.

The second estimation, corresponding to the second and the third stages of the conducted optimization, was called MCS 95%
and its purpose was to estimate the solution of the optimization problem as an interval. The sample for this type of estimation
was obtained similarly to the MCS 100% sample, but this time using only 100 values per variable. The convenient solutions (as
defined in Section 6) were found for each sample triplet and their relative frequencies were calculated (see Fig. 7). MCS 95%
was repeated three times requiring an average computing time of 30 UT.

As it can be observed in Fig. 7, in this type of estimation the distribution peak flattened, providing the solution not as a single
point, but as an interval of convenient solutions. The values with a relative frequency higher than 0.95 have been considered to be
part of the interval-solution. Therefore, the estimated interval containing convenient solutions obtained using MCS 95% is [—60;
—40] pm. This interval is insignificantly narrower than the interval [—63; —37] um, obtained from the proposed three-stage op-
timization performed using KGCS. Though, the time ratio 0.83:30 indicates a considerable time difference. It should be mentioned
here that a finer discretization (with a step lower than 5 pm) of the interval representing the values of the bench bearing arrange-
ment preload/clearance could lead to a larger interval-solution when using MCS 95%, but it would also dramatically increase the
average computing time. It has to be mentioned here that the estimated time needed to validate the solution of the real problem
is about 100 times larger for the same accuracy. This determined us to present the formulation of the simplified problem and val-
idate the obtained solution.

An attempt was made to replace the last two stages with only one stage in which the search for both interval-solution limits
was conducted at once. The obtained results were similar but with a much larger standard deviation for the same number of ob-
jective function evaluations. Therefore, the three-stage approach was considered appropriate and the abovementioned simplifica-
tion of the problem was removed. In this way the real problem is described by six variables: x, In1, In2, CI1, CI2, and T, where 1
and 2 refer to the first and second bearings, respectively. The optimization results are given in Table 6 and consequently, it can be
stated that the bench bearing preload should be in the interval [—65; —36] pm.

8. Conclusions

This study is focused on finding the optimal value of the bench bearing preload/clearance that maximizes the bearing arrange-
ment life which depends on geometric and operating parameters treated here as random variables with known distributions. A
new systemic approach for bearing ball load calculation was used for bearing arrangement life computation.

The optimal design problem was formulated as a three-stage optimization problem. The first stage consisted in the stochastic
optimization problem of finding the value of the bench bearing arrangement preload/clearance that maximizes the expected bear-
ing arrangement life. The second and the third stages aimed to find the solution to the proposed problem as an interval.
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The new KGCS algorithm was used to find the optimal bearing arrangement which was validated using MCS. In contrast to
MCS, which proved to be a highly time-consuming estimation tool, KGCS proved to be flexible, accurate, and with a low compu-
tational cost.

The difference between the obtained solutions for the simplified and the real problem, respectively, is relatively small. This
suggests that the simplified approach can be used in common applications which do not require a high degree of accuracy.
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Appendix A. Loads and moments transmitted from the shaft to the bearings

A shaft is initially considered in Fig. A.8 and n, as the number of discretization nodes. The nodes could represent supports,
points where external loads and moments are applied, points at which the shaft changes its section, etc. Each shaft element (seg-
ment) i, i + 1 is characterized by its length L; and moment of inertia I;.

An external load F; and an external bending moment M; could act in each node i of the shaft. Please note that the present
paper does not concern distributed loads and moments but, for example, if a distributed load exists, it can be equivalated with
a concentrated load applied at the center of the mass of the distributed load. The positive directions of the loads and moments
are those indicated in Fig. A.9:

FM = (F, F, .. F,M;M, .. M,)" (A1)

The slope-deflection equations establish force-displacement relationships for the beam element [41]:

Fiivr = 6(266,=26:0;,1 +bib; + bifh,1) + Fiiiy (A2)
Fiori = —6(266;=28;,1 + bif; + biy,1) + Fioy; (A3)
Mgy = =2(3b;6;=3b;6; 1 +2ai6; + 4if;.1) + M7 (A4)
Migri = —2(3b;6;—=3b;6;, 1 + i + 20,0;,1) + My (A.5)

in which Mf;,; and MmF, | ; are fixed-end moments, F1;, ; and I, ; are fixed-end shear forces, and
el e b _
a; =E; ’b‘_Li’C’_Li’l_l’""’n 1 (A.6)
With respect to the fixed-end shear forces and moments (Fig. A.10), the following new vector can be defined:
RrM = (R, ...R,rM, ..TM,)" (A7)

and its elements, obtained by summing the corresponding Eqs. (A.2)-(A.5) in each node.

I /
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Fig. A.8. Shaft discretization.
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Fig. A.9. Slope and deflection of a shaft element.

Using the following denotation 80=(6; .. 6461 .. 6,)7, one obtains the succeeding matrix equation:
RrM = AG - 60 —FM (A.8)

where AG is the stiffness matrix. It is worth noting that if i is a free node, then RrM;=R;=0 and RrM,,  ;=rM;=0. If i is a support,
then RrM; and RrM,, ,; could be non-zero, according to the support type and represents the reaction and the reaction moment of
the support against the shaft.

Presuming that the following q nodes ¢;,q> ..., qq are the shaft supports (in ascending order) let's extract the vector 80P =
(6, - Og, Onigq, - 0n+qq)T from the vector 60 and let's symbolize the remaining vector with 60*). We introduce two new
matrices AG®) and AG'P: AG®) results from the matrix AG by erasing the columns q1,q> ..., qq, n+qi, n+¢qs ... n+qgand
AG™ will be formed by the erased columns. Eq. (A.8) becomes:

RrM = AG®? . 50%) + AG® - 56" —FM (A.9)

The system is separated into two systems corresponding to the constrained and free nodes, and the equations for RrM.. and
RrM onsurainea Can be written using Eq. (A.9), for example:

RrMjee = AGP, - 80 + AGp), - 80 — FMi,, (A.10)
RrMg:.. corresponds to the free nodes, and therefore this vector is null. The matrices AG P) and AG}er are deduced from
the matrices AG®) and AG', respectively, by erasing the rows q;, ..., qq,n+qi ...,n+qq The matrices AGB)srainea and

AG hstrainea are formed by the erased rows. FMgr.. is obtained from FM by erasing the rows q; ..., qq, n+¢qy ..., n+qq
while FMconstrained is formed by the erased rows. Expressing the elements of the vector 80 as a linear combination of the

i=1,n2 .TFn-Ln = =ilpg .TFn,n-1 == P

i+1 n-1 n

F; y F., F.
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M, :ﬂ X Mmhj k\' M, x

a) b)

Fig. A.10. Fixed-end shear forces and moments: a) first n — 2 segments; b) last segment.
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elements of the vector 60"’ from Eq. (A.10) and substituting them in the equation corresponding to the constrained nodes, it
yields:

RtM congtrainea = A - 507 + B (A11)
where

A :AG(P) AG*(S) _AG(P)

constrained 'free

B=AG". FMfree_ FM constrained
+(5) ®) (5) )1
AG S = AG, > <AGf:ee)

constrained

Using Eq. (A.11) the corresponding equations can be written for the vertical and horizontal plane in which the loads and the
moments transmitted from the shaft to the bearings occur. Aggregating these equations and considering both bearings on which
the shaft is rested on as well as the axial force, the vector FM can be found by changing the sign of the reactions and reaction
moments:

FM=A. A0 +B+FA (A12)

where FA=(F,00000 000 )" and F, is the axial force.
Appendix B. Loads and moments transmitted to the shaft due to the bearing elastic deformations

The model created is relatively similar to that presented in [15], yet with notable differences. For the rolling bearing analysis,
one can consider the relative movement between the bearing rings.

In order to limit the model complexity and following the most frequently used shafts, housings, and bearing arrangements, the
ensuing assumptions are considered: (1) deformations of the shaft, housing and bearing rings are neglected and only the elastic
deformations of the rolling elements are included; (2) centrifugal forces acting on the rolling elements, loads generated by inter-
action from the cage, frictional forces inside the bearings, and gyroscopic moments are neglected; (3) spring constants of the balls
are equal and constant with temperature.

Two coordinate systems were introduced, to facilitate the analysis in the bearing reference point: a right-handed Cartesian one
(Oxyz, in Fig. B.11) and a cylindrical system O¢x, where ¢ is the angle between the r-axis and positive y-direction, being positive if
measured as depicted in Fig. B.11.

Let the inner ring displacement vector be symbolized by 60 = (6, 6, 6, 6, 6, )" and the loading from the rolling elements on the
inner ring by fm= (f; f, f. my m, )". All loads and displacements refer to the bearing reference point O. Now consider an inner ring
axial section, positioned to such angle ¢ chosen so that the rx-plane passes through the center of the ball being selected. As it will
be noticed, the analysis can be simplified by choosing the inner ring groove center O; (Fig. B.11) as reference point of the selected
inner ring axial section. This point will be stored as the following vector: 0;= (7o, xol,)T. The abovementioned axial section is loaded
(by the ball deformation) in its reference point O; by the load vector Q7, where QT = (Q; Qx T,)", corresponding to the displace-
ment vector uy, where uy= (u, uy 'y@)T. Since O; was chosen as reference point of the axial section, it results that always 7, =0
and vectors Q and u were used instead of Q7 and uy, where Q = (9, Oy )" and u=(u, u, )".
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Fig. B.11. Bearing Cartesian and cylindrical coordinate systems. Inner ring loading and displacements.
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The situation becomes more complicated for roller bearings [20,21,42] and, at least other criteria determine the choice of the
reference point of the inner ring axial section [16].

As the displacements are usually small, the displacement vectors u and 6 can be related using u = Tyy,2rx(0;, @) - 66, where the
transformation matrix Tyy,2rc (05 ¢) is given by the equation:

T,,

Sy _ [0 cos@ sing  —Xg;Sing  Xq; COSQ
203 @) = <1 0 0 ro,-si'n(p —Iro,-cosqo (B.1)

and the rolling element force vector Q is transformed to an equivalent force vector fm at the inner ring reference point using
Sm = Troxy2(0;, @) - Q, where Tixoxy(0;,©) = [Txy22rx(0:, @) T The load vector Q and the compressive load Q acting on the ball are
related by O = Q - Topx (@), where Toox(0t) = (— cosa — sina)” and a is the contact angle (Fig. B.12). Based on classical

Hertzian theory Q= cp-6°/2, where the cp is the spring constant. Therefore,
32
fm =cp 5% Top0,(0;,0, ) (B2)

where Taoxyz(0i, @, &) = Trxaxyz( 0, @) - Tazrx(x). The previously mentioned axial section through the bearing is presented in more
detail in Fig. B.12. In this figure r; and r, are the radii of the inner ring and outer ring raceway profiles in the axial plane, respectively,
D,, is the ball diameter, and O, is the outer ring groove center. As 0;, the point O, is stored by means of the subsequent vector
0.= (rOEXOE)T- ,

The total elastic deformation of the ball is obviously 6= max(0,—s’—s ). It is very easy to prove that the contact angle and
the deformation of the ball are two functions of the position of the bearing rings and therefore, the status of the bearing is unique-
ly described by the vectors O; and O,, respectively.

This approach is extremely helpful also because one can discern between the status of the bearing “before the external load-
ing” (e.g. preload/clearance after mounting) and its status “after the external loading”. If the initial status of the bearing is de-
scribed by the vectors Of and O the final status (after the external loading of bearing) is depicted by the vectors 0{=0!+u
and O, = 0:. Consequently, the values after loading of the contact angle and the ball total elastic deformation can be determined
and then used in Eq. (B.3). Therefore, knowing the initial status of the bearing before loading and using the equations presented
above for every ball j of those Z balls of the bearing, the loading from the rolling elements on the inner ring will be:

z
3/2 i
fm=cp- zﬁj/ “Tooxy: (O; + Uj,(Pjyaj) (B.3)
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Fig. B.12. Bearing axial section geometry.
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It is obvious that for a given initial status of the bearing the vector fm is a function of only the displacement vector 66. Note
that in our approach the initial status of the bearing before loading always encompasees the elastic deformation of the bearing
rings due to fits and the thermic expansions of the bearing rings and shaft (both radial and axial).

As there are two bearings supporting the shaft in the application presented in Section 3, two equations similar to Eq. (B.3) can
be derived. After a convenient aggregation the vector fin is obtained as a function of A® (which contains five displacements per
bearing node with the observation that since the axial displacements of each of the two nodes are considered equal in this ap-
proach, the corresponding value is considered only once).
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